Characterization of local pH changes in brain using fast-scan cyclic voltammetry with carbon microelectrodes.
نویسندگان
چکیده
Transient local pH changes in the brain are important markers of neural activity that can be used to follow metabolic processes that underlie the biological basis of behavior, learning and memory. There are few methods that can measure pH fluctuations with sufficient time resolution in freely moving animals. Previously, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used for the measurement of such pH transients. However, the origin of the potential dependent current in the cyclic voltammograms for pH changes recorded in vivo was unclear. The current work explored the nature of these peaks and established the origin for some of them. A peak relating to the capacitive nature of the pH CV was identified. Adsorption of electrochemically inert species, such as aromatic amines and calcium could suppress this peak, and is the origin for inconsistencies regarding in vivo and in vitro data. Also, we identified an extra peak in the in vivo pH CV relating to the presence of 3,4-dihydroxyacetic acid (DOPAC) in the brain extracellular fluid. To evaluate the in vivo performance of the carbon-fiber sensor, carbon dioxide inhalation by an anesthetized rat was used to induce brain acidosis induced by hypercapnia. Hypercapnia is demonstrated to be a useful tool to induce robust in vivo pH changes, allowing confirmation of the pH signal observed with FSCV.
منابع مشابه
A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri ...
متن کاملDetermination of epinephrine in the presence of uric acid and folic acid using nanostructure-based electrochemical sensor
Fabrication and electrochemical characterization of a sensor for the determination of epinephrine (EP), uric acid (UA) and folic acid (FA) is described. The sensor was prepared using carbon paste electrode (CPE) modified with 3,4-dihydroxybenzaldehyde-2,4-dinitrophenylhydrazone (DDP) and carbon nanotubes (CNTs), which makes the modified electrode highly sensitive for the electrochemical detect...
متن کاملFast-scan cyclic voltammetry for the detection of tyramine and octopamine.
Tyramine and octopamine are biogenic amine neurotransmitters in invertebrates that have functions analogous to those of the adrenergic system in vertebrates. Trace amounts of these neurotransmitters have also been identified in mammals. The purpose of this study was to develop an electrochemical method using fast-scan cyclic voltammetry at carbon-fiber microelectrodes to detect fast changes in ...
متن کاملDetermination of Riboflavin by Nanocomposite Modified Carbon Paste Electrode in Biological Fluids Using Fast Fourier Transform Square Wave Voltammetry
Herein, fast Fourier transformation square-wave voltammetry (FFT-SWV) as a novel electrochemical determination technique was used to investigate the electrochemical behavior and determination of Riboflavin at the surface of a nanocomposite modified carbon paste electrode. The carbon paste electrode was modified by nanocomposite containing Samarium oxide (Sm2O3)/reduced gra...
متن کاملHitchhiker's Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry
Fast-scan cyclic voltammetry (FSCV) has been used for over 20 years to study rapid neurotransmission in awake and behaving animals. These experiments were first carried out with carbon-fiber microelectrodes (CFMs) encased in borosilicate glass, which can be inserted into the brain through micromanipulators and guide cannulas. More recently, chronically implantable CFMs constructed with small di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 82 23 شماره
صفحات -
تاریخ انتشار 2010